Handling Recursion in Generic Programming
Using Closed Type Families

Anna Bolotina1 and Artem Pelenitsyn2

1 Southern Federal University, Rostov-on-Don, Russia
bolotina@sfedu.ru
2 Czech Technical University in Prague, Prague, Czech Republic
pelenart@fit.cvut.cz

Abstract. Many of the extensively used libraries for datatype-generic programming offer a fixed-point view on datatypes to express their recursive structure. However, some approaches, based on sums of products, do not use a fixed point. They allow for generic functions that do not require to look at the recursive knots in a datatype representation, but raise issues otherwise. A known and unwelcome solution is the use of overlapping instances. We present an alternative approach that uses closed type families to eliminate the need of overlap for handling recursion in datatypes. Moreover, we show that our idiom allows for families of mutually recursive datatypes.

Category: full research paper.

Studentship: both authors are students.

Keywords: Datatype-generic programming · Sums of products · Recursion · Overlapping instances · Closed type families · Zipper · Mutually recursive datatypes · Haskell.

1 Introduction

A classical way to generically express a datatype is to represent its constructors as the chains of nested binary sums, and turn constructor arguments into the chains of nested binary products [24, 3, 13]. De Vries and Löh [5] describe a different sum-of-products approach to representing data using \(n \)-ary sums and products that are both lists of types; a sum of products is thus a list of lists of types. They call their view SOP which stands for a “sum of products”. It is implemented in the \texttt{generics-sop} [6] library and is based on several relatively recent extensions to the Haskell type system, such as \texttt{data kinds}, \texttt{kind polymorphism} [27] and \texttt{constraint kinds}. Using these Haskell features, the library provides the generic view and equips it with a rich collection of high-level combinators, such as ones for constructing sums and products, collapsing to homogeneous structures, and others. They form an expressive instrument for defining generic functions in a more succinct and high-level style as compared to the classical binary sum-of-products views.

There are many generic functions that deal with the recursive knots when traversing the structure of datatypes. Some of the most general examples are
maps [17] and folds [20]; more advanced one is a zipper [10, 9, 1]. For handling recursion, several generic programming approaches express datatypes in the form of polynomial functors closed under fixed points [26, 11, 15]. The SOP view naturally supports definitions of functions that do not require a knowledge about recursive occurrences, but otherwise becomes unhandy.

One possible solution to the aforementioned shortcoming of SOP is to modify its core by explicitly encoding recursive positions using the fixed-point approach. However, this may complicate the whole framework significantly. Besides, such a decision may lead to extra conversions between the generic views.

Another known solution uses overlapping instances. This, usually unwelcome, Haskell extension complicates reasoning about the semantics of code. In particular, the program behavior becomes unstable, for it can be affected by any module defining more specific instances. Morris and Jones [21] extensively discuss the problems arising from overlapping instances. The overlap problem also strikes in the security setting when code is compiled as -XSafe because GHC does not reflect unsafe overlaps and marks the module as safe [8].

We feel both existing approaches unsatisfactory and make the following contributions.

– We describe the problem with the current approach of SOP in detail (Section 2).
– We introduce an idiom that overcomes the problem. The approach avoids both, the use of overlapping instances and changing a generic representation. (Section 3)
– We evaluate our approach through the development of a larger-scale use case—the generic zipper. The zipper is meant to be easily and flexibly used with families of mutually recursive datatypes (Section 4).
– We note, that our approach can contribute to the generics-sop’s one eliminating some boilerplate instance declarations, which necessarily arise in practice as a consequence of absence of information about recursion points. An example of that, taken from the basic-sop [23] package, is discussed in Section 3.2.

We believe that our idea is suitable for any sum-of-products approach that do not exploit the fixed point view and thus subject to the problem. We choose the generics-sop approach as a case study because it appears to be a widely applicable library and builds on powerful language extensions implemented in GHC.

2 The SOP universe and the problem

In this section, we first review the SOP view on data, describing its basic concepts to introduce the terminology we are using. Then we discuss the problem with handling recursion by generic functions and illustrate it with a short example.
data NP (f :: : k → *) (xs :: [k]) where
 Nil :: NP f '[]
 (:*) :: f x → NP f xs → NP f (x ': xs)

data NS (f :: : k → *) (xs :: [k]) where
 Z :: f x → NS f (x ': xs)
 S :: NS f xs → NS f (x ': xs)

Fig. 1. Datatypes for n-ary sums and products.

2.1 The SOP view

We first explain the terminology we adopt from SOP [5, 14] and use throughout the paper. The main idea of the SOP view is to use n-ary sums and products to represent a datatype as an isomorphic code whose kind is a list of lists of types. The SOP approach expresses the code using the DataKinds extension, with a type family:

type family Code (a :: *) :: [[*]]

An n-ary sum and an n-ary product are therefore modelled as type-level heterogeneous lists: the inner list is an n-ary product that represents a sequence of constructor arguments, while the outer list, an n-ary sum, corresponds to a choice of a particular constructor.

Consider, for instance, a datatype of binary trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)

This datatype is isomorphic to the following code:

type instance Code (Tree a) = '['a', '[Tree a, Tree a]

As shown in Figure 1, the datatypes NS for an n-ary sum and NP for an n-ary product are defined as GADTs and are indexed [9] by a promoted list of types. The encoding also holds an auxiliary type constructor f (typically, a functor) which is meant to be applied to every element of the index list. Therefore, NP is a modest abstraction over a heterogeneous list.

The definitions of NS and NP are kind polymorphic. The index list is allowed to contain types of arbitrary kind k, since k turns to * by applying the type constructor f. Basic instantiations of type parameter f found in SOP are identity functor I, that is, a type-level equivalent for id function, and a constant functor K, an analogue of const:

 newtype I (a :: *) = I {unI :: a}
 newtype K (a :: *) (b :: k) = K {unK :: a}

If instantiated with I, NP is a plain heterogeneous list, while K a turns it into a homogeneous one, isomorphic to [a]. Here is an example value of type NP I:

 I 5 :: I True :: I 'x' :: Nil :: NP I '[Int, Bool, Char]
We turn to the sum definition now. The constructor \(S \) of \(NS \), given an index in \(n \)-element list, results in an index in a list with \(n + 1 \) elements, skipping the first one, while \(Z \) stores the payload of type \(f \times \). For example, the following chooses the third element of a sum:

\[
S \left(S \left(Z \left(I \ 5 \right) \right) \right) :: NS I \ [\text{Char, Bool, Int, Bool}]
\]

The sum constructors are similar to Peano numbers, so the choice from a sum of products of a datatype matches the index of its particular constructor in the index list and stores the product representing arguments of that constructor.

With the \(NS \) and \(NP \) machinery at hand, SOP defines the \textbf{Generic} class with conversion functions \textbf{from} and \textbf{to} witnessing the isomorphism between a datatype and its generic representation:

```haskell
type Rep a = SOP I (Code a)

class All SListI (Code a) ⇒ Generic (a :: *) where
  type Code a :: [t]
  from :: a → Rep a
  to :: Rep a → a
```

The sum of products type, \(SOP f \), is a newtype-wrapper for \(NS \ (NP f) \), and the structural representation \textbf{Rep} of a datatype \(a \) is a type synonym for a \(SOP \ I \) of \(a \)’s code. The functions, \textbf{from} and \textbf{to}, perform a shallow conversion of the datatype topmost layer—they do not recursively translate the constructor arguments.

We leave out discussion of the \textbf{SListI} constraint in the \textbf{Generic} class definition as irrelevant to our work. Although, we do use \textbf{All} constraint combinator (as in \textbf{All SListI}) in the following. Therefore, it is worth noting that \textbf{All} applies a particular constraint (e.g. \textbf{SListI} above) to each member of a list of types. The usage of constraints as type arguments is allowed due to \textbf{ConstraintKinds} language extension introducing a dedicated kind \textbf{Constraint}.

We have introduced generic representation employed by the SOP library and are ready to describe the problem of handling recursion points, stemming from the representation.

2.2 Problem with handling recursion

We illustrate the problem through a short example. The \textbf{QuickCheck} library [4] for automatic testing of Haskell code defines a helper function \textbf{subterms} that takes a term and obtains a list of all its immediate subterms that are of the same type as the given term, that is, all the recursive positions in the term structure. We reimplement this function using the SOP view:

```haskell
subterms :: Generic a ⇒ a → [a]
subterms t = subtermsNS (unSOP $ from t)
subtermsNS :: NS (NP I) xss → [a]
subtermsNS (S ns) = subtermsNS ns
subtermsNS (Z np) = subtermsNP np
```
subtermsNP :: ∀a xs. NP I xs → [a]
subtermsNP p (I y :* ys)
 | typeEq @a y = witnessEq y : subtermsNP ys
 | otherwise = subtermsNP ys
subtermsNP _ Nil = []

The function subterms translates the term to its representation, unwrapping the
sum of products from SOP, and passes that to the auxiliary function subtermsNS.
The latter merely traverses the sum and, once reaches the product, passes it
further to subtermsNP.

The algorithm of subtermsNP is straightforward—it traverses the product,
appending current element to the result list if its type is the same as of the term
t, otherwise skipping the element. We use GHC’s TypeApplications extension to
pass that type.

Now, we need a way to check type equality and, in the case of equal types,
to witness that the element is of the desired type. There is no clear path to this
at the moment. Therefore, we step back (until Section 3.1) and, to implement
subtermNP, follow the QuickCheck’s example\(^3\), using overlapping instances of a
dedicated class instead.

class Subterms a (xs : : [*]) where
 subtermsNP : : NP I xs → [a]
instance Subterms a xs ⇒ Subterms a (x ': xs) where
 subtermsNP (_:*: xs) = subtermsNP xs
instance {-# OVERLAPS #-} Subterms a xs ⇒ Subterms a (a ': xs) where
 subtermsNP (I x :*: xs) = x : subtermsNP xs
instance Subterms a '[] where
 subtermsNP _ = []

To make the whole solution work, we need to propagate the constraints all
the way through subtermsNS and subterms signatures:

subterms :: (Generic a, All (Subterms a) (Code a)) ⇒ a → [a]
subtermsNS :: All (Subterms a) xss ⇒ NS (NP I) xss → [a]

Although the approach works, as exemplified by a number of the packages on
Hackage, we aim for release of generic programs from overlap. This would remove
the complexity overhead introduced by the approach, as we have mentioned in
the introduction.

\(^3\) The QuickCheck library applies another approach to generic programming, namely
GHC.Generics.
3 Handling recursion with closed type families

In the previous section, we have shown a solution to the problem of handling recursion, which uses overlapping instances. We are going to improve the solution and remove overlap now.

Closed type families are the Haskell language extension introduced by Eisenberg et al. [7]. The main idea of the extension is that the equations for a closed type family are disallowed outside its declaration. Under the extension, we can give the following definition of type-level equality:

```haskell
type family Equal a x :: Bool where
   Equal a a = 'True
   Equal a x = 'False
```

The equations in a closed type family are matched in a top-to-bottom order. Since the order is fixed, the overlapping equations here cannot be used to define unsound type-level equations.

3.1 Solution to subtermsNP revised

We now return to our running example from Section 2.2. With the type equality, we can witness the coercion between equal types by defining a type class:

```haskell
class Proof (eq :: Bool) (a :: *) (b :: *) where
   witnessEq :: b → Maybe a

instance Proof 'False a b where
   witnessEq _ = Nothing
instance Proof 'True a a where
   witnessEq = Just
```

For every element in a list of all direct subterms of a term we shall provide a proof object witnessing its type (in)equality to the type of the term. This can be done by means of the `All` combinator and partially applied auxiliary type class `ProofEq`, which abbreviates the heavy-weighted interface of `Proof`:

```haskell
class Proof (Equal a b) a b ⇒ ProofEq a b
instance Proof (Equal a b) a b ⇒ ProofEq a b
```

Resulting implementation of `subtermsNP` resembles our first definition given in the previous section:

```haskell
subtermsNP :: ∀a xs. All (ProofEq a) xs ⇒ NP I xs → [a]
subtermsNP (I (y :: x) :: ys) = case witnessEq @(Equal a x) y of
   Just t → t : subtermsNP ys
   Nothing → subtermsNP ys
subtermsNP _ Nil = []
```
As a side note, we make use of `ScopedTypeVariables` extension in the definition above, as the type of the element being matched does not appear in the function signature, since it may match an empty list.

To complete the solution of the problem, the `ProofEq` constraint must be added to the `subterms` and `subtermsNS` declarations as well.

In summary, we claim that any generic function accessing recursive knots in the underlying datatype structure can be defined in the way described above for `subterms` task. We give another example showing how to adapt our idiom to different scenarios in the following subsection.

3.2 Generic show

The function `show` is a common example of useful functions that traverse a datatype's recursive structure. It is known that this function can be defined in a generic way for an arbitrary datatype. De Vries and Löh define generic function `gshow` in the `basic-sop` package [23] based on the SOP view. We follow their implementation of `gshow` for the most part, but improve it in respect of handling recursion. The original `gshow` yields to the standard `show` generated through `deriving Show`, because it does not consult with recursion points to place parentheses. We eliminate this drawback.

The following exploits the idea of pattern matching. As before, we consider two cases. In the first case, when the position we are matching on is not recursive, we only require it to be an instance of `Show`, and invoke its `show` function. Whereas in the case of the recursive position, we surround it with parentheses and apply our generic function `gshow`. Thus, by means of the type family for equality, we model a form of pattern matching on the types again:

```haskell
class CaseShow (eq :: Bool) (a :: *) (b :: *) where
caseShow' :: b → String

instance Show b ⇒ CaseShow 'False a b where
  caseShow' = show

instance GShow a ⇒ CaseShow 'True a a where
  caseShow' t = "(" ++ gshow t ++ ")"
```

We provide a synonym for the `CaseShow (Equal a b) a b` instance, which we call `CaseRecShow`, as before with `ProofEq`; likewise a synonym for the matching function:

```haskell
caseShow :: ∀a b. CaseRecShow a b ⇒ b → String
caseShow t = caseShow' @(Equal a b) @a t
```

The resulting function `gshow` is a subject of a number of constraints abbreviated by a `GShow` synonym:

```haskell
type GShow a = (Generic a, HasDatatypeInfo a, All2 (CaseRecShow a) (Code a))
gshow :: ∀a. GShow a ⇒ a → String
```
The function \texttt{gshow} employs metadata provided by \texttt{generics-sop}'s class \texttt{HasDatatypeInfo} to show the names of a datatype constructor and its record fields. The \texttt{generics-sop} library is able to derive this metadata automatically. The function is also constrained by \texttt{CaseRecShow} with the \texttt{All2} combinator that is an analogue of \texttt{All} for a list of lists of types.

We define \texttt{gshow} mutually recursive with \texttt{caseShow}. The full implementation of the function \texttt{gshow} is left for the extended version of the paper in Technical Report4.

The function \texttt{gshow} can now be used to generically show data—for example, a value of type \texttt{Tree Bool}; note that \texttt{Tree a} from Section 2.1 is now assumed to be an instance of \texttt{Generic} and \texttt{HasDatatypeInfo}.

\begin{verbatim}
*Main> let tree = Node (Leaf True) (Leaf False)
*Main> gshow tree
"Node (Leaf True) (Leaf False)"
\end{verbatim}

Here is a benefit of our implementation: it can be used directly, without any additional instance declarations, whereas \texttt{basic-sop} 23 offers the following usage pattern for \texttt{gshow} and some datatype \texttt{T}:

\begin{verbatim}
instance Show T where
 show = gshow
\end{verbatim}

This is a consequence of \texttt{gshow} from \texttt{basic-sop} not treating recursive positions separately, and therefore requiring the \texttt{Show} constraint for all knots in the datatype structure.

4 The generic zipper

The zipper is a data structure that enables efficient navigation and editing within the tree-like structure of a datatype. It represents a current location in that structure, storing a tree node, a focus, along with its context. Having a zipper focused on a recursive knot in a structure, we may produce a new location by moving the focus up, down, left, or right. On the way, we can update the nodes. Entering and leaving the navigation usually need a special care.

The classical zipper described by Huet 10 can be generically calculated for regular datatypes 9—a subset of datatypes that can be viewed as a least fixed point of some polynomial expression on types. Yakushev et al. 26 generalize the definition of the generic zipper for an arbitrary family of mutually recursive datatypes. All mentioned solutions require a datatype to be expressed using forms of a fixed-point operator, since the zipper operates on recursion points.

In this section, we describe our approach allowing one to define the generic zipper out of a representation that does not exploit a fixed point. We start with the generic zipper interface and an example of how it can be used (Section 4.1). Then, we turn to the type-level machinery employed to define locations.

Movement functions

goUp :: Loc a fam c → Maybe (Loc a fam c)
goDown :: Loc a fam c → Maybe (Loc a fam c)
goLeft :: Loc a fam c → Maybe (Loc a fam c)
goRight :: Loc a fam c → Maybe (Loc a fam c)

Starting navigation

enter :: ∀fam c a. (Generic a, In a fam, Zipper a fam c) ⇒ a → Loc a fam c

Ending navigation

leave :: Loc a fam c → a

Updating

update :: (∀b. c b ⇒ b → b) → Loc a fam c → Loc a fam c

Fig. 2. Generic zipper interface.

inside mutually recursive datatypes using the SOP view (Section 4.2). Finally, we discuss the implementation of the generic zipper interface — the functions for manipulating locations (Section 4.3).

4.1 Interface and usage

The interface we provide for the generic zipper is shown on Figure 2. It comprises the functions for movement, starting and ending navigation, and updating the focus, which are defined over the location structure.

The functions goUp, goDown, goLeft, and goRight produce a location with the focus moved up to the parent of the focal subtree, down to its leftmost child, left and right to the left and right sibling, respectively, if it is possible. A movement may fail, as specified by the Maybe monad, if we cannot go further in a chosen direction. Navigation in a tree starts at the root, and the type variable a refers to the root type that remains the same during the navigation, while the type in the focus of the location may vary and is one of the types in a type list fam.

The function signature of enter specifies the constraints necessary to begin navigation in a structure. Firstly, a datatype of the structure needs to have the Generic representation. Secondly, the In constraint checks if type a is a member of a type family fam. Thirdly, the Zipper constraint collects specific constraints that refer to the implementation of movement operations. Note that the universal quantifier here sets the instantiation order of the type variables for type applications that will be a part of our usage pattern for the zipper.

The leave function ends navigation moving up to the root and returns its modified value.
The `update` function modifies the focal subtree with a given constrained function. The type in focus is existentially quantified inside `Loc` and should satisfy the constraint `c`. The structure of `Loc` (shown in Section 4.2) guarantees that the constraint holds for all types in the family `fam` and, therefore, for all recursive nodes that can be in focus, hence `update` can always be applied.

Consider the following example of usage of the interface. Define a pair of mutually recursive datatypes for a rose tree and a forest, where the forest is a list of trees, and the tree is defined as a value in a node and a forest of its children:

```haskell
data RoseTree a = RTree a (Forest a)
data Forest a = Empty | Forest (RoseTree a) (Forest a)
```

Updating the trees can be done through a class:

```haskell
class UpdateTree a b where
  replaceBy :: RoseTree a → b → b
  replaceBy _ = id
instance UpdateTree a (RoseTree a) where
  replaceBy t _ = t
instance UpdateTree a (Forest a)
```

This replaces a tree node with a given tree, and, for the forests, this leaves the nodes untouched.

For chaining moves and edits, we can follow Yakushev et al. [26] and employ the flipped function composition `>>>` and Kleisli composition `>>=`. The latter is instantiated with the `Maybe` monad that wraps the result type of the movement functions.

```haskell
>>> :: (a → b) → (b → c) → (a → c)
>>= :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)
```

The type family we need to run the example is defined as follows:

```haskell
type TreeFam a = ' [RoseTree a, Forest a]
```

Finally, we can use zipper operations with our updating function to traverse and replace a part of a forest:

```haskell
*Main> let forest = Forest (RTree 'a' $ Forest (RTree 'b' Empty) Empty)
           (Forest (RTree 'x' Empty) Empty)
*Main> let t = RoseTree 'c' Empty
*Main> enter @(TreeFam Char) @(UpdateTree Char)
  >>> goDown >>> goRight >>> goDown
  >>> update (replaceBy t)
  >>> leave >>> return $ forest
```
This yields the following result:

\[
\text{Forest (RTree 'a' $ Forest (RTree 'b' Empty) Empty)}
\]
\[
(Forest (RTree 'c' Empty) Empty)
\]

Our zipper applies to regular datatypes as well. In that case, \(\text{fam list} \) shall contain a single element. Generally, the interface is flexible enough to allow us to check in any collection of types we are interested in during traversal. However, we demand an updating operation to be a type class function to distinguish the types of the nodes.

4.2 Locations

The location structure consists of a focal subtree, which is one of the mutually recursive nodes of the whole structure of the family of datatypes, and its surrounding context:

\[
\text{data Loc (r :: *) (fam :: [*]) (c :: * → Constraint) where}
\]
\[
\text{Loc :: Focus r a fam c → Contexts r a fam → Loc r fam c}
\]

The type parameters \(r, \text{fam}, \text{and} c \) in \(\text{Loc} \) correspond to the root type of the tree, the list of types of nodes to visit, and a constraint imposing restrictions on the types in the list, respectively. Also, the single constructor is existentially quantified over one more type variable, \(a \), for we need to store a type of the focus’ parent to be able to move up successively in a tree-like structure. We discuss both term parameters of the constructor of \(\text{Loc} \) in detail below.

Focus The subtree in a focus is wrapped by the \(\text{Focus} \) datatype. The wrapper incapsulates the proofs about a number of important properties of a focus.

\[
\text{data Focus (r :: *) (a :: *) (fam :: [*]) (c :: * → Constraint) where}
\]
\[
\text{Focus :: (Generic b, In b fam, ZipperI r a b fam c) ⇒ b → Focus r a fam c}
\]

Existential type variable \(b \) represents the type of a focus. We apply a number of predicates to \(b \), hence we can implement the steps of the navigation not knowing the actual type of a focus. Firstly, the type of a focus should have the \(\text{Generic} \) representation. Secondly, it should live \(\text{In} \) the list of types we are going to visit. Lastly, it ought to satisfy the set of constraints for the whole zipper interface captured by the \(\text{ZipperI} \) predicate. In particular, the predicate ensures that \(a \) is the type of the parent for the focus in the structure under consideration.

We implement the \(\text{In} \) constraint by means of a type family \(\text{InFam} \) exactly along the lines of the \(\text{Equal} \) type family defined in the beginning of Section 3.

\[
\text{type In a fam = InFam a fam ∼ 'True}
\]

The definition of \(\text{InFam} \) is omitted as a boring one.
class ProofFocus (inFam :: Bool) (r :: *) (a :: *) (b :: *)
 (fam :: [*]) (c :: * → Constraint) where
 witness :: b → Maybe (Focus r a fam c)

instance ProofFocus 'False r a b fam c where
 witness _ = Nothing

instance (Generic b, In b fam, ZipperI r a b fam c)
 ⇒ ProofFocus 'True r a b fam c where
 witness = Just . Focus

class ProofFocus (InFam b fam) r a b fam c
 ⇒ ProofIn r a b fam c

instance ProofFocus (InFam b fam) r a b fam c
 ⇒ ProofIn r a b fam c

Fig. 3. Proof of membership of a family of datatypes.

One last missing piece for managing focuses is the class ProofIn. It provides a
proof of membership of a focus type to a family. Again, this generalizes the proof
of type equality from Section 3. The definitions of ProofIn and an auxiliary class
ProofFocus are given in Figure 3.

Contexts A focus on a particular node, augmented with a surrounding context
of that node, is enough to reconstruct the entire structure. Therefore, the context
of a location has the shape of the original structure but with one hole at the
place of its focus. This is sometimes called a one-hole context.

The context can be expressed as a stack, called Contexts, and each frame,
Context, corresponds to the particular node with a hole. The stack ascends from
the focal node keeping its siblings, the siblings of its parent, etc., until it reaches
the root node. So the stack of contexts, essentially, reflects the track of the move-
ment inside the structure.

data Contexts (r :: *) (a :: *) (fam :: [*])
 (c :: * → Constraint) where
 CNil :: Contexts a a fam c
 Ctxs :: (Generic a, In a fam, ZipperI r x a fam c)
 ⇒ Context fam a → Contexts r x fam c
 → Contexts r a fam c

The type parameters have the same meaning as for the Loc datatype. The
ZipperI constraint with the type x of the previous context frame indicates that
the constraint for the zipper holds after plugging the focus in the hole. Therefore,
all the properties can be proved by induction for the focus type when it moves
down in the tree adding new contexts onto the stack. The CNil constructor for
an empty context, with the r and a types being equal, forms the inductive basis
in that kind of proof.
Note that the type of the current focus is not reflected in the Contexts datatype.

Type-level DifferentiationMcBride [19] studies a relation between the one-hole context definition and partial differentiation from calculus: he shows that the type of the context for an arbitrary (regular) type can be derived mechanically from that type by means of a list of differentiation rules that serve as formulaic instructions for computing the type in type-level programming. Yakhushiev et al. [26] then demonstrate that the method can be generalized for mutually recursive datatypes. We adapt that technique to generics-sop, and now need a few auxiliary type-level functions to implement the computation of the context type. Those functions, defined recursively via type families, provide algebraic operations for lists of types (which we regard as sums and products of types): addition and multiplication. Specifically, we define addition .++ of two sums of products (SOP) of types, multiplication .* of a SOP by a single type, and multiplication .** of a SOP by a product of types, as shown in Figure 4.

SOP addition

```haskell
type family (.++) (xs :: [[*]]) (ys :: [[*]]) :: [[*]] where
  (x ': xs) .++ ys = x ': (xs .++ ys)
  '[] .++ ys = ys
infixr 6 .++
```

SOP-by-type multiplication

```haskell
type family (.*) (x :: *) (ys :: [[*]]) :: [[*]] where
  x .* (ys ': yss) = (x ': ys) ': (x .* yss)
  x .* '[] = '[]
infixr 7 .*
```

SOP-by-product multiplication

```haskell
type family (.**) (xs :: [*]) (ys :: [[*]]) :: [[*]] where
  (x ': xs) .** yss = x .* (xs .** yss)
  '[] .** yss = yss
infixr 7 .**
```

Fig. 4. Algebraic operations on type-level sums and products.

The addition operation just appends two type-level lists of lists (sums of products), multiplication by a type adds the type to the head of each inner list of the sum (here we see multiplication of a product and the distributive property of multiplication over addition, just as in arithmetic of numbers), and multiplication by a product appends the list to the head of each inner product of the sum. Again, kind [*] here denotes products, and [[*]] denotes sums (of
data Hole = Hole

data End

type family DiffProd (fam :: [*]) (xs :: [*]) :: [[*]] where
 DiffProd fam '[] = '[]
 DiffProd fam '[x] = If (InFam x fam) '[Hole] '[]
 DiffProd fam '[End, x] = If (InFam x fam) '[[]] '[]
 DiffProd fam (x ': xs)
 = Hole .* xs .** DiffProd fam '[End, x] .++
 x .* DiffProd fam xs

Fig. 5. Differentiation of a product of types.

products), so the relation with arithmetic of numbers in these definitions becomes
more clear if one realizes that an empty sum '[] :: [[*]] corresponds to 1,
and an empty product '[] :: [*] corresponds to 0. We also specify, through
the infixr declaration, that multiplication has a higher priority than addition.

Context Frame At this point, we can implement differentiation of a product
of types and, therefore, the computation of a context frame type.

The definition of differentiation, shown in Figure 5, resembles its analogue
from calculus, but it is now generalized for the setting of families of datatypes:
the differentiation of the single type reflected by a one-element list here results
in 0 (reflected by '[]) if that is not in the family and hence is regarded as a
constant, otherwise it results in 1. When differentiation gives 1, it is actually the
hole, which we express by defining the unit type Hole. Reflecting this type in
the context is helpful when we traverse the context representation to plug the
hole. We use the empty type End to distinguish the case when the hole is found
at the end of the list, in order not to add that into the result twice. The sum
'[] represents a unit type that is exactly 1. We also use type-level If that
returns its second argument for 'True, and the third one otherwise. We do not
give its definition here, as it is straightforward.

The following completes the computation of the context type:

data ConsN = F | N ConsN | None
 deriving Eq

type family ToContext (n :: ConsN) (fam :: [*])
 (code :: [[*]]) :: [[*]] where
 ToContext n fam '[] = '[]
 ToContext n fam (xs ': xss)
 = Proxy n .* DiffProd fam xs .++ ToContext ('N n) fam xss

The type family ToContext derives the type of the context of a datatype per-
forming differentiation of a sum on its code. Since each product from the code
matches a sum of multiple products in the context, it is helpful for each product
of the context representation, to keep the index of its matching constructor of
the datatype. We store the index in the datatype \texttt{ConsN} adding that to the head of each product but wrapped by \texttt{Proxy} because we use \texttt{ConsN} promoted to a kind in the type family, while the products contain types of kind \texttt{*}. The constructors \texttt{F} and \texttt{N} denote “first” and “next”, respectively, and the special constructor \texttt{None} will be used further to indicate failure of matching indices.

Finally, a context frame has two representations: as a type synonym and as a newtype wrapper

\begin{verbatim}
type CtxCode fam a = ToContext 'F fam (Code a)
newtype Context fam a = Ctx { ctx :: SOP I (CtxCode fam a) }
\end{verbatim}

The wrapper allows GHC to perform type inference where it is doomed to fail with a plain type synonym. On the other hand, the \texttt{CtxCode} type comes handy in constraints applied to the generic zipper interface functions.

4.3 Implementing the zipper interface

We now can implement the interface functions of the zipper, which we have previously described. We only demonstrate the implementation of the \texttt{goDown} function here. This shows the idea of how we can use our idiom for defining the zipper functions, and the source code with the full implementation of the zipper interface is available at our GitHub repository\footnote{\url{https://github.com/Maryann13/Zipper}}.

To move focus down to the leftmost child of the current focal node in the tree, we should analyze the focal subtree’s representation to find its first immediate child, and compute its respective context. The following definition of \texttt{goDown} uses two auxiliary functions: \texttt{toFirst} and \texttt{toFirstCtx}.

\begin{verbatim}
goDown :: Loc a fam c \to Maybe (Loc a fam c)
goDown (Loc (Focus t) cs) = case toFirst t of
 Just t' \to Just $ Loc t' (Ctxs (toFirstCtx t) cs)
 _ \to Nothing
\end{verbatim}

The function \texttt{toFirst} returns its result in the \texttt{Maybe} monad, and may return \texttt{Nothing}, if the focal node has no children, that is, we currently focus on the leaf node and cannot go down. The function \texttt{toFirstCtx} should not fail: if we can move, it computes the context that matches the leftmost subtree selected from the focus’ children.

\texttt{toFirst} We first implement the function \texttt{toFirst}. Its full definition is displayed in Figure 6. The \texttt{toFirst} function uses the higher-ordered function \texttt{appToNP} that unwraps the product from \texttt{NS} and applies the given function to that product. The function \texttt{toFirstNP} is defined recursively using the proof we have defined for families: it traverses the product until it finds the first recursive node by means of \texttt{witness} that for the node \texttt{x} of unknown type \texttt{b}, witnesses its membership of the...
toFirst :: ∀fam c r a. (Generic a, ToFirst r a fam c) ⇒ a → Maybe (Focus r a fam c)
toFirst t = appToNP @AllProof toFirstNP $ unSOP $ from t

Proof

class All (ProofIn r a fam c) xs ⇒ AllProof r a fam c xs
instance All (ProofIn r a fam c) xs ⇒ AllProof r a fam c xs
type ToFirst r a fam c = All (AllProof r a fam c) (Code a)

Processing products
toFirstNP :: ∀fam c r a xs. All (ProofIn r a fam c) xs ⇒ NP I xs → Maybe (Focus r a fam c)
toFirstNP (I (x :: b) :* xs) = witness @(InFam b fam) x 'mplus' toFirstNP xs
toFirstNP Nil = Nothing

Fig. 6. Implementation of toFirst.

family, or else returns Nothing. To provide the proof for the representation code of a datatype, we define the proof for all products in a sum, and pass this proof through explicit type application to appToNP which takes a constrained function. The appToNP function is defined similarly to subtermsNS from Section 2.2, and we omit its definition here.

toFirstCtx The definition of toFirstCtx is more complicated, as it performs the computation of the context. The implementation comprises several steps including type- and term-level programming. In the following, we systematically construct the context representation from the given generic representation of a datatype.

At first, for a datatype’s given constructor represented by NP, we build its matching constructor of the context. All constructors of the context have the same shape as the constructors of its respective datatype but with a hole at one of points of recursion—we are now computing the context with the first recursive node deleted. Assuming that we have the product type for the context computed, we can compute the product by matching on that type:

class FromFstRec (ys :: [*]) (xs :: [*]) where
 fromFstRec :: NP I xs → NP I ys
instance FromFstRec (Hole ' : xs) (x ' : xs) where
 fromFstRec (_ :* xs) = I Hole :* xs
instance FromFstRec ys xs
 ⇒ FromFstRec (x ' : ys) (x ' : xs) where
 fromFstRec (x :* xs) = x :* fromFstRec xs
instance FromFstRec '[] '[] where
fromFstRec _ = Nil

Note that the first type parameter in the FromFstRec class is the index type list of the result \(\text{NP} \)—this order of type variables remains for type application through which we will supply the computed type.

Once we have constructed the product, we have to build the sum representing the choice of that product. If we have the index of the chosen constructor for the datatype, the one that we find for its context can be computed as follows:

```haskell
type family CtxConsN (xss :: [[*]]) (n :: ConsN) :: ConsN where
  CtxConsN '[] n = 'None
  CtxConsN ((Proxy n ': xs) ': xss) n = 'F
  CtxConsN ((Proxy n' ': xs) ': xss) n = 'N (CtxConsN xss n)
```

The list \(xss \) here is expected to be the context code, which this traverses until the first product storing the constructor index equal to the given one, i.e., the context’s first constructor matching with the chosen constructor of the datatype.

To construct the sum with the computed index and product, we again need a proof to witness that the product is type-consistent with the constructor choice. To choose the constructor from the context code, we can adopt generics-sop’s `injections`:

```haskell
injections :: \( \forall \) f. SListI xs \Rightarrow \text{NP} (\text{Inj} f xs) xs
newtype Inj f xs a = Inj {apInj :: f a \rightarrow K (NS f xs) a}
```

For \(f \) instantiated to \(\text{NP} \ I \) and \(xs \) to be the sum of products reflecting a representation code, `injections` creates a product of all constructor choices that inject appropriate constructor arguments into each sum. We can use injections to choose the one that matches the obtained index.

We now can witness the choice using the proof of type equality we have defined in Section 3. In the following definition, \(f \) is supposed to be instantiated to \(\text{Inj} (\text{NP} \ I) \ xss \) where \(xss \) reflects the code of the context:

```haskell
class Proof (Equal a b) (f a) (f b) \Rightarrow \text{ProofF} f a b
instance Proof (Equal a b) (f a) (f b) \Rightarrow \text{ProofF} f a b

class ConsNInj (n :: ConsN) (ys :: [*]) where
  consNInj :: \( \forall \) (f : ConsN) (ys :: [*]) \Rightarrow NP f xss \rightarrow f ys
instance ConsNInj n xs \Rightarrow ConsNInj ('N n) xs where
  consNInj _ xs = consNInj @n xss

instance ConsNInj 'F xs where
  consNInj Nil = impossible
```

6 The actual definition of the type of injections in generics-sop slightly differs from this. We adapt that for presentation.

7 This might be simplified by using a singleton type for ConsN instead of defining a type class function. However, when using a singleton, the recursive definition of toFirstCtx we give further requires a constraint on its function signature that leads to a nonterminating computation.
\begin{verbatim}
consNInj ((xs :: f xs) :: _) = fromMaybe impossible $ witnessEq @(Equal xs ys) xs
consNInj Nil = impossible
instance ConsNInj 'None xs where
 consNInj _ = impossible

impossible :: a
impossible = error "impossible"

As long as the constructor index and product type are computed correctly, the
proof should never fail (impossible). And when it passes, this ensures by type
check that the constructor choice for the given product type is faithful.

Finally, we define a function that applies the injection and returns the con-
structed context for the given product, representing its constructor arguments,
and index of that constructor. The type of \texttt{injections} below will be inferred
from the return type of the context.

\begin{verbatim}
type AppInj n xs ctx = (ConsNInj n xs, SListI ctx,
 All (ProofF (Inj (NP I) ctx) xs) ctx)

appInjCtx :: \forall n xs fam a. AppInj n xs (CtxCode fam a)
 \Rightarrow NP I xs \rightarrow Context fam a
appInjCtx np
 = Ctx $ SOP $ unK $ apInj (consNInj @n injections) np
\end{verbatim}

The definition of \texttt{toFirstCtx} can now be given using the defined functions
\texttt{appInjCtx} and \texttt{fromFstRec}. The following makes use of a type-level function
\texttt{FstRecToHole} to compute the product type by replacing the first recursive oc-
currence in the given datatype’s product list with type \texttt{Hole}. Its definition is
straightforward, and is omitted here.

\begin{verbatim}
toFirstCtx :: \forall fam c a. (Generic a, ToFirstCtx fam a)
 \Rightarrow a \rightarrow Context fam a
toFirstCtx t = toFirstCtxNS @'F $ unSOP $ from t

toFirstCtxNS :: \forall n fam c xss. ToFirstCtx' fam c n xss
 \Rightarrow NP I xss \rightarrow Context fam a
toFirstCtxNS (S ns) = toFirstCtxNS @('N n) ns
toFirstCtxNS (Z (np :: NP I xs))
 = appInjCtx @(CtxConsN (CtxCode fam a) n) $
 I (Proxy @n) ::* fromFstRec @(FstRecToHole fam xs) np

type ToFirstCtx fam a = ToFirstCtx' fam a 'F (Code a)
\end{verbatim}

The \texttt{ToFirstCtx'} constraint here is a complex constraint for use of \texttt{appInjCtx}
and \texttt{fromFstRec}, which involves extra type classes and a bit of type-level pro-
gramming to deduce those particular constraints. Its definition is given in the
extended version of the paper in Technical Report. We omit this here for reasons
of space.
\end{verbatim}
We have established the mechanism of translation, which is cumbersome but verifying, via the proof, that the constructed context will have the correct type for any given datatype and family. The other functions in the zipper interface can be implemented according to this technique.

5 Related work

There are many works that contribute to the datatype-generic programming. Rodriguez et al. [22] and Magalhães and Löh [18] review a number of existing approaches and provide their detailed comparison in various aspects. There are several generic views that use certain forms of the fixed point operator to express recursion in a datatype structure [24, 26, 11, 15]. And there are a number of approaches that do not make use of fixed points [2, 3, 17, 25], but explicitly encode recursion in the datatype representation. The SOP view [5], which we use to demonstrate our technique, is an approach to generic programming that does not reflect recursive positions in the generic representation of a datatype. This approach uses heterogeneous lists of types to encode sums and products in the generic representation.

The idea similar to SOP has been proposed by Kiselyov et al. [12] in their HList library for strongly typed heterogeneous collections. In the paper, the authors also discuss problems connected with overlap, which they use for access operations. Another Haskell extension, functional dependencies, is applied to restrict overlap by introducing a class for type equality there, which resembles our solution.

Morris and Jones [21] introduce the type-class system ilab, based on the Haskell 98 class system, with a new feature called “instance chains”. This enables one to control overlap by using an explicit syntax in instance declarations. The approach resembles if-else chains. But the use of instance chains and local use of overlap leave code error-prone as a consequence of type class openness. Closed type families [7] were recently introduced in Haskell to solve the overlap problem.

6 Conclusion

Defining generic functions, which consider recursion points, is easy within generic views that are explicit about recursion in the datatype representation. Not so much otherwise. Although, there are some approaches that address the problem by means of global or local overlaps. We have developed the technique that allows one to define generic functions that treat recursion without its explicit encoding and without overlap.

We have demonstrated that the method suits for advanced recursive schemes, such as the generic zipper interface. Also, it supports families of mutually recursive datatypes.
Arguably, it is still easier to treat recursion when “explicit” encoding is used. On the other hand, we believe, once the problem of handling recursion is shown to be manageable, new generic universes shall emerge, not worrying about the recursion support, but rather focusing on other generic programming problems.

Acknowledgments

We are grateful to Julia Belyakova who helped to proof-read certain parts of the paper, and to the Seminar on Programming Languages and Compilers at I.I. Vorovich Institute of Mathematics, Mechanics and Computer Science (Southern Federal University, Russia) where we presented partial results of the work and got valuable feedback.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 695412)

References

23. basic-sop: Basic examples and functions for generics-sop (2017), https://hackage.haskell.org/package/basic-sop